
Standard of Practice
Middleware Software
Development Standards

Summary

1. The GitLab service at https://code.vt.edu is the hub of the software development and

deployment process.

2. Jira is the issue management system for most software products.

3. Middleware uses a review-then-merge process for changes to the mainline branch.

4. Projects MUST use a build system to produce software artifacts.

5. A GitLab CI pipeline is the standard process for executing the build system to produce

and deploy software artifacts.

6. Style checkers and linters should be integrated into the build to ensure consistent style.

7. Unit tests are required; integration tests are optional, but encouraged.

8. Technical documentation should be provided as needed: code, module, subsystem,

product.

Software Development Workflow

The Virginia Tech GitLab service is the hub of the software development workflow. All source

code lives in GitLab and all meaningful changes are made to the mainline branch (typically

master/main) by way of merge requests (MR). All merge requests should be reviewed by a

distinct developer from the one that wrote the code. While reviews are often perfunctory rubber

stamps in practice as the reviewer may not have the level of expertise of the author in the target

module or product, reviewers are encouraged to evaluate code on the following bases at a

minimum:

1. Sensible naming (component, property, and variable)

2. Use of common design patterns

3. Adequate test coverage

1

https://code.vt.edu
https://code.vt.edu

A code review is not a doctoral dissertation defense; reviewers should avoid blocking forward

progress unless there are serious diversions from convention or significant implementation

problems are discovered. A reviewer should generally spend no more than a couple hours

reviewing changes; developers should generally spend no more than a half-day responding to

code review feedback. Large change sets are of course an obvious exception to this rule of

thumb.

Merge requests are typically accepted and merged if there are no conflicts. In the case of a

merge conflict, the reviewer simply accepts the MR, which is the trigger for the developer to

rebase changes and force-push to the ephemeral branch that is the base of the MR. The

developer then merges the branch using the GitLab UI. Be careful to use the Modify commit

message button to pick an existing commit message; by default only the summary of the MR is

used in the commit message, which often drops useful if not vital context about the change.

Since most Middleware projects use a simple commit strategy rather than merge commit, the text

of the merge request commit is vitally important.

When a merge request is used to implement a feature or fix a software defect that is tracked in

Jira, it is important to cross-reference the merge request in GitLab with the Jira issue. This is most

easily accomplished by mentioning the Jira issue number in the commit summary (see next

section) and adding a comment to the Jira issue that contains a link to the merge request.

Commit Messages

The following guidelines are in the spirit of https://cbea.ms/git-commit/, which is arguably the gold

standard for git commit message best practices. Please use the following example as a template

for writing commit messages:

JIRA-1234 Fix resource leak in HTTP conn pool.

Use try-with-resources pattern to ensure connections are always
closed. Clean up thread-local variables in finally block.

The first line should include the Jira issue number for any issue that is fixed or feature that is

implemented by the commit. The summary should be at most 50 characters. If there are notable

aspects of the commit, they should be summarized on subsequent lines with a blank line

2

https://cbea.ms/git-commit/

between the summary and details. Use clear and concise language that summarizes changes

rather than repeat implementation details. Lines in the details should not exceed 72 characters.

Git Branch Naming Conventions

The following sections discuss common cases for which we have defined naming conventions. In

general, branch names should use kebab-case when multiple words are required to describe the

branch; exceptions are clearly noted below.

Main Branch

The main branch in every Middleware project is named main according to current best practice

for Git repositories.

Version Branch

Sometimes it is necessary to maintain a branch that tracks a different software version than the

main branch; for example, when a new feature is being developed for the next version that would

conflict with whatever is in production. For this special case, we simply use the static name

prod_branch to describe the branch that tracks production. If there were ever a case where

multiple branches needed to be maintained, such as a library project where multiple older

versions are still being maintained, the following convention should be used:

v-$version

When the product lifecycle results in end of life for the version, the branch is typically deleted.

Feature Branch

Feature branch names are long-lived branches where disruptive or experimental features are

being developed that would present problems if development were done on the main branch, so

a feature branch is used to insulate the main branch from churn. A feature branch should conform

to the following convention:

feature-$summary

Where $summary is a brief description of the feature under development; for example a feature

branch targeting an upgrade to Hibernate 6 may be called:

feature-hibernate-6

3

Feature branches should be treated similarly to the main branch where merge requests are used

to incorporate software changes in a task-oriented fashion for Kanban process integration; merge

requests also facilitate peer review of code in line with best practice. When software

development is completed on the feature branch, the branch is typically merged to the main

branch and the branch is deleted.

Task/Issue Branch

This is the common case for the software development workflow where a development task to

be completed is tracked on a separate Git branch that ends in a merge request onto the main

branch. Task branches are named as follows:

$issue-$summary

Where $issue is the issue number and $summary is a brief description of the task or issue. The

summary should be brief and succinct; it only needs to jog the memory about the topic of

development. The issue number can easily be used as a reference to get the full context of the

task. Task branches are deleted upon merge.

Sudden Feature Branches

Sometimes during the course of work on a task it becomes clear that the work will not be

completed in the typical Kanban time box of 1 - 3 days. The cause is often a combination of

inadequate decomposition and poor estimation; another possible cause is discovery that the

resulting changes would be disruptive to the main branch. In any case it happens and should not

be a cause for alarm. In these cases the task branch should target a feature branch rather than

main. The first step is to create the feature branch locally and push to the remote repository. If a

merge request HAS NOT been prepared, simply note that the eventual merge request will target

the feature branch rather than main and continue as normal. If a merge request HAS been

created, then the merge request should be updated to target the feature branch rather than the

main branch. Software development then proceeds as usual: the merge request is reviewed and

eventually merged with the feature branch.

Build System

Every project that produces a software artifact should have a build system to ensure a

reproducible build; for projects based on Java or Kotlin the build system MUST be Apache

Maven. Software projects that define deployable services should also produce Docker images for

4

deployment in a container technology. The current technology stack for deployment at the

moment is AWS ECS/Fargate, so there should be Cloud Formation templates that describe

runtime deployment infrastructure on AWS as well.

Build Toolchains and Coupling

Several projects produce multiple software artifacts via distinct toolchains; for example, a typical

Web application is composed of the following:

1. Javascript build for browser-based front-end (Vite.js)

2. Java/Kotlin build for REST API back-end (Apache Maven)

3. Docker build to produce container image (Docker)

Each software artifact is produced by a technology-specific toolchain mentioned in parenthesis.

In order to support the CI/CD process (following section), toolchains MUST NOT be tightly

coupled in a way that requires multiple toolchains to be present in order to build software

artifacts. (We elaborate on why in the following section.) For example, the Java build system

MUST NOT be required to produce Docker images that require the docker binary/daemon on the

build host. The Java build may produce Docker images for local development and testing as a

matter of convenience to developers for projects where a Dockerized runtime is required, but it

MUST NOT be the sole or canonical process. A seeming exception to this rule is our Web

applications that are built with Node.js by a Maven plugin that can manage the process without

requiring a local install of Node.js on the host executing the build. Thus it meets the requirement

that exactly one build toolchain, JDK/Maven, is required to build both Java and Javascript

software artifacts.

Often distinct build toolchains need to coordinate on common configuration in order to produce a

set of related artifacts; version number is a common use case. In this case we recommend

generating one file per property/configuration element in the first step of the build where they are

needed and subsequently consuming each file as needed in subsequent build steps. The

following stepwise process summarizes the recommended approach:

Step1: Write version.txt file containing version in build #1.

Step2: Read version.txt file containing version in build #2.

…

Step N: Read version.txt file containing version in build #N.

5

CI Pipeline

A GitLab CI pipeline, directed by a .gitlab-ci.yml file, is responsible for executing the build system

to produce software artifacts, including execution of unit and integration tests, as well as

deploying software artifacts to a target deployment environment, typically AWS ECS/Fargate. The

mainline branch (master/main) is always the default target for builds; tags are used to identify

versions that are slated for production deployments. The special pprd tag moves to a version that

is staged for production deployment, while a protected vX.Y.Z branch is used to identify a version

that will be deployed to production.

Runners

A runner is the unit of execution that executes a build process to produce software artifacts.

While there are several types of runners that GitLab supports, Middleware has adopted Docker

runners for a number of reasons:

● Improves repeatability of builds

● Facilitates declarative dependencies of toolchains

● Build toolchains can be provided by off-the-shelf images

Thus Docker runners provide both convenience and robustness with few down sides. The last

requirement is notable: in order to leverage off-the-shelf images, build systems MUST NOT

require multiple toolchains to produce artifacts.

The docker-runner GitLab runner is available to all Middleware projects and SHOULD be used

whenever possible. Build processes that require access to the Docker daemon (e.g. docker

build) MUST use a special runner, docker-runner-socket, that provides access to the Unix

domain socket that is exposed by the daemon. While this is not onerous in practice, it is a

requirement that bears mentioning.

Coding Conventions

The material aspects of software development simply cannot be prescribed; at best we can offer

some general guidelines that tend to steer developers toward good code:

● Strive for the simplest solution that solves the problem

● Decompose difficult problems into manageable chunks

6

● Apply modularity to encapsulate concerns

● Avoid undue coupling between components/systems

● Apply proven software patterns (correctly) where possible

● Balance use of third-party libraries with avoiding dependency bloat

● Don’t repeat yourself

In the end good software is something that good developers know and can easily identify, which

is why the code review process is essential to the Middleware software development workflow. It

can’t be prescribed, but it can be identified and cultivated through peer review and refinement.

The incidental aspects of code such as formatting and naming conventions can easily be

prescribed with tools such as Checkstyle (Java), ktlint (Kotlin), and eslint (Javascript). A standard

ruleset is available for Java and Kotlin, while any reasonable rule set for eslint is acceptable. The

build system should be configured to fix rule violations where possible and fail builds otherwise.

Testing

Every software development task should be accompanied by at least some meaningful unit test

coverage. For components or subsystems with substantial external dependencies, mocks may be

a practical way of implementing meaningful tests. On the other hand, sometimes the mechanics

and/or behaviors are so tightly coupled to an external fixture that it would be better to provide

tests that execute against a real test fixture. While the use of external fixtures in tests is often

categorized as integration tests, Middleware often finds that component unit tests sometimes

merit these fixtures. In any case the Docker Compose technology provides a convenient way to

package code, test fixtures, and simple configuration in a text file that can be executed as either

part of the build or as a one-off test procedure. Many projects contain docker-compose.yml files

in the source tree for this purpose.

Documentation

Documentation should accompany code as needed to clarify the purpose, requirements,

assumptions, and notable interactions of software components, modules, and systems. Even

product technical documentation may be warranted if there are notable large-scale interactions

or behaviors that merit explanation or summarizing. Documentation in code itself should be

principally concerned with describing public interfaces (functions and components) and data

types and should adhere to platform-specific best practices. In the case of Java source code, our

most common platform, the Checkstyle rules enforce good habits; elsewhere, best practices

should be sought and followed.

7

https://code.vt.edu/middleware/java-core-lib
https://github.com/pinterest/ktlint

Design considerations and decisions (the why of things) should be externalized to the issue

tracking system where the feature (or bug) has been requested in order to elicit feedback from

the development team before a decision is made; then the decision should be documented on

the issue and executed in code. Mentioning the issue number in the commit message for the

feature ties the implementation to the rationale in a convenient fashion.

If diagrams are warranted for large scopes of work, then UML diagrams SHOULD be created

using PlantUML and stored as text with the source under the doc directory in the project root.

The diagrams MAY be rendered as PNG files and included in the doc directory or even

embedded in the project README if they are perceived as generally helpful.

8

